Fetch all data in the table by the given name, returning a tibble with field names corresponding to the columns in that table.

fetch_table(api, table_id, filters = NULL)

Arguments

api

A 'gristapi::grist_api'-object

table_id

Normalized table name (see id in listtables method). First character upper. OBLIGATORY

filters

String. This is a JSON object mapping column names AND (&) sorting result AND (&) limit number of rows. example : filter={"Country":["UNITED STATES"],"Card_Member":["CLARE DUDLEY","DARIUS BURGESS"]}&sort=Card_Member,-Date&limit=10 See the grist API doc for more examples Note : add &hidden=true to include the hidden columns Default NULL

Value

A tibble::tibble() object.

See also

Examples

# view all data from a given table
table_name <- paste0("Mtcars_", get_os())
api <- grist_api$new(
  server = 'https://grist.numerique.gouv.fr',
  api_key = Sys.getenv("GRIST_KEY"),
  doc_id = Sys.getenv("GRIST_DOC_TEST")
)
fetch_table(api, table_name)
#> # A tibble: 32 × 13
#>       id names   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <int> <chr> <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#>  1     1 Mazd…  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2     2 Mazd…  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3     3 Dats…  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4     4 Horn…  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5     5 Horn…  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6     7 Dust…  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  7     8 Merc…  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  8     9 Merc…  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#>  9    10 Merc…  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> 10    11 Merc…  17.8     6  168.   123  3.92  3.44  18.9     1     0     4     4
#> # ℹ 22 more rows

# view data from a given table with a limit
fetch_table(api, table_name, filters = "limit=10")
#> # A tibble: 10 × 13
#>       id names   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <int> <chr> <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#>  1     1 Mazd…  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2     2 Mazd…  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3     3 Dats…  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4     4 Horn…  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5     5 Horn…  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6     7 Dust…  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  7     8 Merc…  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  8     9 Merc…  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#>  9    10 Merc…  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> 10    11 Merc…  17.8     6  168.   123  3.92  3.44  18.9     1     0     4     4

# view data from a given table with a filter
fetch_table(api, table_name, filters = 'filter={"cyl": [8]}')
#> # A tibble: 15 × 13
#>       id names   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <int> <chr> <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#>  1     5 Horn…  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  2     7 Dust…  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  3    12 Merc…  16.4     8  276.   180  3.07  4.07  17.4     0     0     3     3
#>  4    13 Merc…  17.3     8  276.   180  3.07  3.73  17.6     0     0     3     3
#>  5    14 Merc…  15.2     8  276.   180  3.07  3.78  18       0     0     3     3
#>  6    15 Cadi…  10.4     8  472    205  2.93  5.25  18.0     0     0     3     4
#>  7    16 Linc…  10.4     8  460    215  3     5.42  17.8     0     0     3     4
#>  8    17 Chry…  14.7     8  440    230  3.23  5.34  17.4     0     0     3     4
#>  9    22 Dodg…  15.5     8  318    150  2.76  3.52  16.9     0     0     3     2
#> 10    23 AMC …  15.2     8  304    150  3.15  3.44  17.3     0     0     3     2
#> 11    24 Cama…  13.3     8  350    245  3.73  3.84  15.4     0     0     3     4
#> 12    25 Pont…  19.2     8  400    175  3.08  3.84  17.0     0     0     3     2
#> 13    29 Ford…  15.8     8  351    264  4.22  3.17  14.5     0     1     5     4
#> 14    31 Mase…  15       8  301    335  3.54  3.57  14.6     0     1     5     8
#> 15    33 Dust…  16.7     8  360    245  3.21  3.57  15.8     0     0     3     4